AMBT19 PLANT BIOTECHNOLOGY

UNIT-1 INTRODUCTION

Definition, Classical vs modern approach

UNIT-2 PRODUCTION OF DISEASE FREE PLANTS

Explant, shoot tip culture, shoot tip grafting, viricidtel compounds

UNIT-3 MICROPROPAGATION

Basic technique, Automation in the area scope as an commercial venture.

UNIT-4 TISSUE CULTURE AS SOME OF GENETIC VARIABILITY

Somaclonal and gametoclonal variation, Selection, Sources and causes of variation, Application in crop improvement.

UNIT-5 PROTOPLAST RELATED TECHNIQUES

Protoplast, Isolation, Culture and fusion, Selection of hybrid cells, regenration of hybrid plants, somatic hybridization and cybridization, Applications in crop improvement.

UNIT-6 PLANT AS BIOFACTORIES

Concept, Production of Chemicals, Pigments, Perfume, Flavors, Insecticides, anticancer agents and other important compounds.

UNIT-7 TRANSFORMATION TECHNIQUES

Physical methods, Agro bacterium, Mediated transformation

UNIT-8 TRANSGENICS

Basic concept and essential steps of the process, Some examples of transgenic plants, Use of suitable promoters, Gene silencing and measures to overcome it, Commercial aspects of the technology.

UNIT-9 NITROGEN FIXATION

Basic concepts, nif genes and their regulation, potential scope in crop improvement

UNIT-10 TRANSFORMATION OF ORGANELLES

Methods and success, advantages of organller transformation.

UNIT-11 MOLECULAR MARKERS

Concept, SNPs, RAPD, RFLP, ISSR, STMS, role in crop improvement and genome mapping.

Reference Books

1. Plant Tissue Culture: Applications and Limitations. S.S. Bhojwani (1990), Elsevier, Amsterdam.